Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Biol Rep ; 51(1): 532, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637360

RESUMO

BACKGROUND: Doxorubicin is an effective antineoplastic agent but has limited clinical application because of its cumulative toxicities, including cardiotoxicity. Cardiotoxicity causes lipid peroxidation, genetic impairment, oxidative stress, inhibition of autophagy, and disruption of calcium homeostasis. Doxorubicin-induced cardiotoxicity is frequently tried to be mitigated by phytochemicals, which are derived from plants and possess antioxidant, anti-inflammatory, and anti-apoptotic properties. Arbutin, a natural antioxidant found in the leaves of the bearberry plant, has numerous pharmacological benefits, including antioxidant, anti-bacterial, anti-hyperglycemic, anti-inflammatory, and anti-tumor activity. METHODS AND RESULTS: The study involved male Wistar rats divided into three groups: a control group, a group treated with doxorubicin (20 mg/kg) to induce cardiac toxicity, a group treated with arbutin (100 mg/kg) daily for two weeks before doxorubicin administration. After treatment, plasma and heart tissue samples were collected for analysis. The samples were evaluated for oxidative stress parameters, including superoxide dismutase, malondialdehyde, and catalase, as well as for cardiac biomarkers, including CK, CK-MB, and LDH. The heart tissues were also analyzed using molecular (TNF-α, IL-1ß and Caspase 3), histopathological and immunohistochemical methods (8-OHDG, 4 Hydroxynonenal, and dityrosine). The results showed that arbutin treatment was protective against doxorubicin-induced oxidative damage by increasing SOD and CAT activity and decreasing MDA level. Arbutin treatment was similarly able to reverse the inflammatory response caused by doxorubicin by reducing TNF-α and IL-1ß levels and also reverse the apoptosis by decreasing caspase-3 levels. It was able to prevent doxorubicin-induced cardiac damage by reducing cardiac biomarkers CK, CK-MB and LDH levels. In addition to all these results, histopathological analyzes also show that arbutin may be beneficial against the damage caused by doxorubicin on heart tissue. CONCLUSION: The study suggests that arbutin has the potential to be used to mitigate doxorubicin-induced cardiotoxicity in cancer patients.


Assuntos
Antioxidantes , Cardiotoxicidade , Humanos , Ratos , Animais , Antioxidantes/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/etiologia , Arbutina/farmacologia , Arbutina/metabolismo , Arbutina/uso terapêutico , Miocárdio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Apoptose , Biomarcadores/metabolismo
2.
Biomedicines ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672280

RESUMO

BACKGROUND: Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. METHODS: Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. FINDINGS: Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. INTERPRETATION: Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.

3.
Cancer Lett ; 587: 216733, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38360141

RESUMO

Despite significant advances in diagnostic techniques and treatment approaches, the prognosis of pancreatic ductal adenocarcinoma (PDAC) is still poor. Previous studies have reported that S-phase kinase-associated protein 2 (SKP2), a subunit of the SCF E3 ubiquitin ligase complex, is engaged in the malignant biological behavior of some tumor entities. However, SKP2 has not been fully investigated in PDAC. In the present study, it was observed that high expression of SKP2 significantly correlates with decreased survival time. Further experiments suggested that SKP2 promotes metastasis by interacting with the putative transcription factor paraspeckle component 1 (PSPC1). According to the results of coimmunoprecipitation and ubiquitination assays, SKP2 depletion resulted in the polyubiquitination of PSPC1, followed by its degradation. Furthermore, the SKP2-mediated ubiquitination of PSPC1 partially depended on the activity of the E3 ligase TRIM21. In addition, inhibition of the SKP2/PSPC1 axis by SMIP004, a traditional inhibitor of SKP2, impaired the migration of PDAC cells. In summary, this study provides novel insight into the mechanisms involved in PDAC malignant progression. Targeting the SKP2/PSPC1 axis is a promising strategy for the treatment of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Neoplasias Pancreáticas/genética , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Carcinoma Ductal Pancreático/genética , Proteínas de Ligação a RNA/metabolismo
4.
J Cell Mol Med ; 28(4): e18118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332529

RESUMO

Opioids can be used for medical and non-medical purposes. Chronic pain such as cancer, as well as the frequent use of such drugs in places such as operating rooms and intensive care units, and in non-medical areas like drug abuse the effects and side effects of these drugs need to be examined in more detail. For this purpose, the effects of fentanyl and remifentanil drugs on neuroinflammation, oxidative stress and cholinesterase metabolism were investigated. Neuron cells (CRL-10742) were used for the evaluation of the toxicity of fentanyl and remifentanil. MTT, PON1 activity and total thiol levels for its effect on oxidative stress, AChE and BChE activities for its effect on the cholinergic system, and TNF, IL-8 and IL-10 gene levels for its neuroinflammation effect were determined. The highest neurotoxic dose of fentanyl and remifentanil was determined as 10 µg/mL. It was observed that the rate of neuron cells in this dose has decreased by up to 61.80% and 56.89%, respectively. The IL-8 gene expression level in both opioids was down-regulated while IL 10 gene level was up-regulated in a dose-dependent manner compared to the control. In our results, the TNF gene expression level differs between the two opioids. In the fentanyl group, it was seen to be up-regulated in a dose-dependent manner compared to the control. Fentanyl and remifentanil showed an inhibitory effect against PON1, while remifentanil showed an increase in total thiol levels. PON1, BChE and total thiol activities showed similarity with MTT.


Assuntos
Dor Crônica , Fentanila , Humanos , Fentanila/toxicidade , Remifentanil/farmacologia , Piperidinas/toxicidade , Interleucina-8 , Doenças Neuroinflamatórias , Analgésicos Opioides/toxicidade , Estresse Oxidativo , Neurônios , Dor Crônica/induzido quimicamente , Compostos de Sulfidrila , Arildialquilfosfatase
5.
Mol Biol Rep ; 50(11): 9143-9151, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37768465

RESUMO

BACKGROUND: Quantum dots are usually particles smaller than 100 nm and have a low toxic effect. This study aimed to bioconjugate the anticancer effective melatonin agonist to quantum dots and demonstrate its effects in two cancer lines. This is the first study that aims to examine the anticancer activity of ramelteon bioconjugation to quantum dots, providing a new perspective on the use of Melatonin and its derivatives in cancer. METHODS AND RESULTS: For this purpose, first of all, cobalt sulfide (CoS) quantum dots were synthesized, bioconjugated and characterized with Punica granatum extract by green synthesis method. The effects of synthesized nanomaterials on neuroblastoma and prostate cancer cells were investigated. It was noted that nanomaterials reduced cell viability by 50% in neuroblastoma and prostate cancer lines at a dose of 50 µg/mL. Ramelteon bioconjugated nanomaterials reduced cancer cell viability by 1.4 times more than free melatonin. CoS quantum dots were determined to double the oxidative stress in the neuroblastoma cell line compared to the control, while no change was observed in prostate cancer. In the gene expression findings, it was observed that CoS nanoparticles caused an increase in the expression levels of apoptosis-related genes in the neuroblastoma cell line and induced key protein expression levels of pathways such as ROR-alpha in the prostate cancer cell line. CONCLUSION: As a result, it was observed that the viability of the neuroblastoma cell line decreased with apoptosis induced by oxidative stress, while this effect was observed in the DU-145 cell line via the ROR-alpha pathway.


Assuntos
Melatonina , Neuroblastoma , Neoplasias da Próstata , Pontos Quânticos , Humanos , Masculino , Melatonina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral
6.
Drug Resist Updat ; 71: 101005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37647746

RESUMO

AIMS: Multidrug resistance in pancreatic cancer poses a significant challenge in clinical treatment. Bufalin (BA), a compound found in secretions from the glands of toads, may help overcome this problem. However, severe cardiotoxicity thus far has hindered its clinical application. Hence, the present study aimed to develop a cell membrane-camouflaged and BA-loaded polylactic-co-glycolic acid nanoparticle (CBAP) and assess its potential to counter chemoresistance in pancreatic cancer. METHODS: The toxicity of CBAP was evaluated by electrocardiogram, body weight, distress score, and nesting behavior of mice. In addition, the anticarcinoma activity and underlying mechanism were investigated both in vitro and in vivo. RESULTS: CBAP significantly mitigated BA-mediated acute cardiotoxicity and enhanced the sensitivity of pancreatic cancer to several clinical drugs, such as gemcitabine, 5-fluorouracil, and FOLFIRINOX. Mechanistically, CBAP directly bound to nucleotide-binding and oligomerization domain containing protein 2 (NOD2) and inhibited the expression of nuclear factor kappa-light-chain-enhancer of activated B cells. This inhibits the expression of ATP-binding cassette transporters, which are responsible for chemoresistance in cancer cells. CONCLUSIONS: Our findings indicate that CBAP directly inhibits NOD2. Combining CBAP with standard-of-care chemotherapeutics represents a safe and efficient strategy for the treatment of pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Cardiotoxicidade , Membrana Celular , Resistência a Múltiplos Medicamentos , Neoplasias Pancreáticas
7.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259369

RESUMO

According to population-based studies, lung cancer is the prominent reason for cancer-related mortality worldwide in males and is also rising in females at an alarming rate. Sorafenib (SOR), which is approved for the treatment of hepatocellular carcinoma and renal cell carcinoma, is a multitargeted protein kinase inhibitor. Additionally, SOR is the subject of interest for preclinical and clinical trials in lung cancer. This study was designed to assess in vivo the possible effects of sorafenib (SOR) in diethylnitrosamine (DEN)-induced lung carcinogenesis and examine its probable mechanisms of action. A total of 30 adult male rats were divided into three groups (1) control, (2) DEN, and (3) DEN + SOR. The chemical induction of lung carcinogenesis was performed by injection of DEN intraperitoneally at 150 mg/kg once a week for two weeks. The DEN-administered rats were co-treated with SOR of 10 mg/kg by oral gavage for 42 alternate days. Serum and lung tissue samples were analyzed to determine SRY-box transcription factor 2 (SOX-2) levels. The tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) levels were measured in lung tissue supernatants. Lung sections were analyzed for cyclooxygenase-2 (COX-2) and c-Jun N-terminal kinase (JNK) histopathologically. In addition, cyclooxygenase-2 (COX-2) and c-Jun N-terminal kinase (JNK) were analyzed by immunohistochemistry and immunofluorescence methods, respectively. SOR reduced the level of SOX-2 that maintenance of cancer stemness and tumorigenicity, and TNF-α and IL-1ß levels. Histopathological analysis demonstrated widespread inflammatory cell infiltration, disorganized alveolar structure, hyperemia in the vessels, and thickened alveolar walls in DEN-induced rats. The damage was markedly reduced upon SOR treatment. Further, immunohistochemical and immunofluorescence analysis also revealed increased expression of COX-2 and JNK expression in DEN-intoxicated rats. However, SOR treatment alleviated the expression of these inflammatory markers in DEN-induced lung carcinogenesis. These findings suggested that SOR inhibits DEN-induced lung precancerous lesions through decreased inflammation with concomitant in reduced SOX-2 levels, which enables the maintenance of cancer stem cell properties.

8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3707-3721, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37306715

RESUMO

In this study, we determined the therapeutic effect of parthenolide (PTL), the active component of Tanacetum parthenium, on neuropathic pain caused by paclitaxel (PTX), a chemotherapeutic drug frequently used in cancer treatment, at the gene and protein levels. To this end, 6 groups were formed: control, PTX, sham, 1 mg/PTL, 2 mg/kg PTL, and 4 mg/kg PTL. Pain formation was tested by Randall-Selitto analgesiometry and locomotor activity behavioral analysis. Then, PTL treatment was performed for 14 days. After the last dose of PTL was taken, Hcn2, Trpa1, Scn9a, and Kcns1 gene expressions were measured in rat brain (cerebral cortex/CTX) tissues. In addition, changes in the levels of SCN9A and KCNS1 proteins were determined by immunohistochemical analysis. Histopathological hematoxylin-eosin staining was also performed to investigate the effect of PTL in treating tissue damage on neuropathic pain caused by PTX treatment. When the obtained data were analyzed, pain threshold and locomotor activity decreased in PTX and sham groups and increased with PTL treatment. In addition, it was observed that the expression of the Hcn2, Trpa1, and Scn9a genes decreased while the Kcns1 gene expression increased. When protein levels were examined, it was determined that SCN9A protein expression decreased and the KCNS1 protein level increased. It was determined that PTL treatment also improved PTX-induced tissue damage. The results of this study demonstrate that non-opioid PTL is an effective therapeutic agent in the treatment of chemotherapy-induced neuropathic pain, especially when used at a dose of 4 mg/kg acting on sodium and potassium channels.


Assuntos
Neuralgia , Sesquiterpenos , Ratos , Animais , Paclitaxel/toxicidade , Analgésicos/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
9.
J Pers Med ; 13(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37109035

RESUMO

(1) Background: Doxorubicin (DOX) is extensively used for cancer treatments; however, its clinical application is limited because of its cardiotoxic adverse effects. A combination of DOX and agents with cardioprotective properties is an effective strategy to ameliorate DOX-related cardiotoxicity. Polyphenolic compounds are ideal for the investigation of novel cardioprotective agents. Chlorogenic acid (CGA), an essential dietary polyphenol found in plants, has been previously reported to exert antioxidant, cardioprotective, and antiapoptotic properties. The current research evaluated CGA's in vivo cardioprotective properties in DOX-induced cardiotoxicity and the probable mechanisms underlying this protection. (2) Methods: CGA's cardioprotective properties were investigated in rats that were treated with CGA (100 mg/kg, p.o.) for fourteen days. The experimental model of cardiotoxicity was induced with a single intraperitoneal (15 mg/kg i.p.) injection of DOX on the 10th day. (3) Results: Treatment with CGA significantly improved the DOX-caused altered cardiac damage markers (LDH, CK-MB, and cTn-T), and a marked improvement in cardiac histopathological features accompanied this. DOX downregulated the expression of Nrf2/HO-1 signaling pathways, and the CGA reversed this effect. Consistently, caspase-3, an apoptotic-related marker, and dityrosine expression were suppressed, while Nrf2 and HO-1 expressions were elevated in the cardiac tissues of DOX-treated rats after treatment with the CGA. Furthermore, the recovery was confirmed by the downregulation of 8-OHdG and dityrosine (DT) expressions in immunohistochemical findings. (4) Conclusions: CGA demonstrated a considerable cardioprotective effect against DOX-induced cardiotoxicity. One of the possible mechanisms for these protective properties was the upregulation of the Nrf2/HO-1-dependent pathway and the downregulation of DT, which may ameliorate oxidative stress and cardiomyocyte apoptosis. These findings suggest that CGA may be cardioprotective, particularly in patients receiving DOX-based chemotherapy.

10.
J Cell Physiol ; 238(5): 966-975, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36890751

RESUMO

Gremlin-1 (GR1) is a novel adipokine that is highly expressed in human adipocytes and has been shown to inhibit the BMP2/4-TGFb signaling pathway. It has an effect on insulin sensitivity. Elevated levels of Gremlin have been shown to lead to insulin resistance in skeletal muscle, adipocytes, and hepatocytes. In this study, we investigated the effect of GR1 on hepatic lipid metabolism under hyperlipidemic conditions and explored the molecular mechanisms associated with GR1 by in vitro and in vivo studies. We found that palmitate increased GR1 expression in visceral adipocytes. Recombinant GR1 increased lipid accumulation, lipogenesis, and ER stress markers in cultured primary hepatocytes. Treatment with GR1 increased EGFR expression and mTOR phosphorylation and reduced autophagy markers. EGFR or rapamycin siRNA reduced the effects of GR1 on lipogenic lipid deposition and ER stress in cultured hepatocytes. Administration of GR1 via the tail vein induced lipogenic proteins and ER stress while suppressing autophagy in the livers of experimental mice. Suppression of GR1 by in vivo transfection reduced the effects of a high-fat diet on hepatic lipid metabolism, ER stress, and autophagy in mice. These results suggest that the adipokine GR1 promotes hepatic ER stress due to the impairment of autophagy, ultimately causing hepatic steatosis in the obese state. The current study demonstrated that targeting GR1 may be a potential therapeutic approach for treating metabolic diseases, including metabolic-associated fatty liver disease (MAFLD).


Assuntos
Adipocinas , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Autofagia , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático , Receptores ErbB/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos/farmacologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/genética , Regulação para Cima
11.
Nutrients ; 15(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36771285

RESUMO

Liver pyruvate kinase (PKL) has recently emerged as a new target for non-alcoholic fatty liver disease (NAFLD), and inhibitors of this enzyme could represent a new therapeutic option. However, this breakthrough is complicated by selectivity issues since pyruvate kinase exists in four different isoforms. In this work, we report that ellagic acid (EA) and its derivatives, present in numerous fruits and vegetables, can inhibit PKL potently and selectively. Several polyphenolic analogues of EA were synthesized and tested to identify the chemical features responsible for the desired activity. Molecular modelling studies suggested that this inhibition is related to the stabilization of the PKL inactive state. This unique inhibition mechanism could potentially herald the development of new therapeutics for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Piruvato Quinase/metabolismo , Ácido Elágico/química , Fígado/metabolismo
12.
Mol Biol Rep ; 50(5): 3999-4009, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36849859

RESUMO

BACKGROUND: Glioblastoma multiforme, described as glioblastoma, is a malignancy originating from glial progenitors in the central nervous system and is the most malignant subtype of brain tumors which attracted researcher's attention due to their high recurrence and mortality despite optimal treatments. In the study, we aimed to research whether glioblastoma-originated exosomes play a role in olfactory nerve cell toxicity. METHODS AND RESULTS: For this aim, exosomes obtained from U373 and T98G cells were applied to olfactory nerve cell culture at distinct doses. Then, glutathione (GSH), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), 3-(4,5-Dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT), total oxidant status (TOS) and Immunofluorescence analyzes were performed. We found that both glioblastoma-derived exosomes decreased cell viability in olfactory neurons with increasing doses. According to the obtained data, the olfactory neuron vitality rate was 71% in T98G-exosome, but the decrease in U373-exosome was more obvious (48%). In particular, the 100 µg/ml dose exacerbated oxidative stress by increasing TOS. It also increased cellular apoptosis compared to the control group due to LDH leakage. However, the results of GSH and TAS showed that antioxidant levels were significantly reduced. CONCLUSION: In the microenvironment of olfactory neurons, GBM-derived exosomes increased oxidative stress-induced toxicity by reducing TAC and GSH levels. Therefore, glioblastoma cells by induction of exosome-based stress support malignant growth.


Assuntos
Exossomos , Glioblastoma , Humanos , Glioblastoma/metabolismo , Antioxidantes/metabolismo , Exossomos/metabolismo , Estresse Oxidativo , Oxirredução , Morte Celular , Neurônios/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
13.
Pharmaceutics ; 15(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678874

RESUMO

(1) Background: Colon cancer is one of the most common cancer types, and treatment options, unfortunately, do not continually improve the survival rate of patients. With the unprecedented development of nanotechnologies, nanomedicine has become a significant direction in cancer research. Indeed, chemotherapeutics with nanoparticles (NPs) in cancer treatment is an outstanding new treatment principle. (2) Methods: Fe3O4 NPs were synthesized and characterized. Caco-2 colon cancer cells were treated during two different periods (24 and 72 h) with Fe3O4 NPs (6 µg/mL), various concentrations of 5-FU (4−16 µg/mL), and Fe3O4 NPs in combination with 5-FU (4−16 µg/mL) (Fe3O4 NPs + 5-FU). (3) Results: The MTT assay showed that treating the cells with Fe3O4 NPs + 5-FU at 16 µg/mL for 24 or 72 h decreased cell viability and increased their LDH release (p < 0.05 and p < 0.01, respectively). Furthermore, at the same treatment concentrations, total antioxidant capacity (TAC) was decreased (p < 0.05 and p < 0.01, respectively), and total oxidant status (TOS) increased (p < 0.05 and p < 0.01, respectively). Moreover, after treatment with Fe3O4-NPs + 5-FU, the IL-10 gene was downregulated and PTEN gene expression was upregulated (p < 0.05 and p < 0.01, respectively) compared with those of the control. (4) Conclusions: Fe3O4 NPs exert a synergistic cytotoxic effect with 5-FU on Caco-2 cells at concentrations below the active drug threshold levels.

14.
Transl Neurodegener ; 12(1): 4, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703196

RESUMO

BACKGROUND: Alzheimer's disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress. METHODS: Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35 g L-serine (61.75%), 1 g nicotinamide riboside (5%), 2.55 g N-acetyl-L-cysteine (12.75%), and 3.73 g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28 days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients. RESULTS: We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment. CONCLUSION: Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131.


Assuntos
Doença de Alzheimer , Animais , Ratos , Doença de Alzheimer/metabolismo , Resultado do Tratamento , Cognição , Método Duplo-Cego
15.
Appl Physiol Nutr Metab ; 48(1): 62-73, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458821

RESUMO

This study aimed to evaluate the effectiveness of omega-3 supplementation with exercise in a collagenase-induced Achilles tendinopathy (AT) rat model. Experimental groups (healthy control (HC), AT, exercise (Ex), omega-3 (W), and Ex+W) were randomly allocated. After a week of adaptation, oral omega-3 was initiated for 8 weeks (5 days/week). The exercise groups performed treadmill running for 30 min/day (5 days/week, 20 m/min, 8 weeks) following one week of adaptation (10 m/min, 15 min/day). Matrix metalloproteinase-13 (MMP-13), interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and total antioxidant-oxidant status (TAS) levels were determined in serum samples. Tendon samples were obtained for biomechanical, histopathological, and immunohistochemical assessments. Ultimate tensile force, yield force, stiffness values, collagen type-I alpha 1 expression, and serum TAS significantly decreased (P < 0.05) in AT vs. HC. These values and expression significantly increased in the Ex+W group vs. AT. Serum MMP-13, IL-1ß, and TNF-α levels decreased in all treatment groups vs. AT. The most significant decrease was found in the Ex+W group (P < 0.01). Histopathologically, the improvement in degeneration was statistically significant in the Ex+W group (P < 0.05). Immunohistochemically, MMP-13, IL-1ß, TNF-α, and nitric oxide synthase-2 expression was decreased in all treatment groups vs. AT. In conclusion, omega-3 and exercise might be recommended in AT patients.


Assuntos
Tendão do Calcâneo , Tendinopatia , Animais , Ratos , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Colagenases/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Tendinopatia/induzido quimicamente , Tendinopatia/metabolismo , Tendinopatia/patologia , Fator de Necrose Tumoral alfa/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Condicionamento Físico Animal
16.
Drug Chem Toxicol ; 46(1): 69-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34894956

RESUMO

The aim of this study was to investigate the molecular, biochemical, and histopathological effects of bromelain, which has antioxidant and anti-inflammatory properties, against cisplatin-induced ocular toxicity. The groups were designed as (1) Control, (2) Cisplatin (7 mg/kg, intraperitoneally), (3) Cisplatin + Bromelain (50 mg/kg, orally for 14 consecutive days), (4) Cisplatin + Bromelain (100 mg/kg, orally for 14 consecutive days). The activity of total antioxidant capacity (TAC) and total oxidant status (TOS) and levels of reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1ß (IL-1ß), IL-10, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α) and 8-OHdG were measured in ocular tissue. The mRNA expression of NF-κB and Caspase-3 was also evaluated. Also, ocular sections were evaluated histopathologically. Bromelain demonstrated a dose-dependent protective effect in cisplatin-induced toxicity by regulating oxidative stress, inflammation, and tissue damage. Our results suggested that bromelain may be a potential adjuvant that can protect the eye from cisplatin-induced toxicity.


Assuntos
Antioxidantes , Cisplatino , Humanos , Cisplatino/toxicidade , Antioxidantes/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Bromelaínas/toxicidade , Bromelaínas/metabolismo , Neuropatia Óptica Tóxica , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo
17.
Materials (Basel) ; 15(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500178

RESUMO

Nanobiotechnology influences many different areas, including the medical, food, energy, clothing, and cosmetics industries. Considering the wide usage of nanomaterials, it is necessary to investigate the toxicity potentials of specific nanosized molecules. Boron-containing nanoparticles (NPs) are attracting much interest from scientists due to their unique physicochemical properties. However, there is limited information concerning the toxicity of boron-containing NPs, including cobalt boride (Co2B) NPs. Therefore, in this study, Co2B NPs were characterized using X-ray crystallography (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques. Then, we performed 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, and neutral red (NR) assays for assessing cell viability against Co2B NP exposure on cultured human pulmonary alveolar epithelial cells (HPAEpiC). In addition, whole-genome microarray analysis was carried out to reveal the global gene expression differentiation of HPAEpiC cells after Co2B NP application. The cell viability tests unveiled an IC50 value for Co2B NPs of 310.353 mg/L. The results of our microarray analysis displayed 719 gene expression differentiations (FC ≥ 2) among the analyzed 40,000 genes. The performed visualization and integrated discovery (DAVID) analysis revealed that there were interactions between various gene pathways and administration of the NPs. Based on gene ontology biological processes analysis, we found that the P53 signaling pathway, cell cycle, and cancer-affecting genes were mostly affected by the Co2B NPs. In conclusion, we suggested that Co2B NPs would be a safe and effective nanomolecule for industrial applications, particularly for medical purposes.

18.
Biomed Res Int ; 2022: 5467498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36281465

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by behavioral and psychological symptoms in addition to cognitive impairment and loss of memory. The exact pathogenesis and genetic background of AD are unclear and there remains no effective treatment option. Sarcosine, an n-methyl derivative of glycine, showed a promising therapeutic strategy for some cognitive disorders. To our knowledge, the impacts of sarcosine supplementation against AD have not yet been elucidated. Therefore, we aimed to determine the neuroprotective potential of sarcosine in in vitro and in vivo AD model. In vitro studies have demonstrated that sarcosine increased the percentage of viable cells against aluminum induced neurotoxicity. In AlCl3-induced rat model of AD, the level of antioxidant capacity was significantly decreased and expression levels of APP, BACE1, TNF-α, APH1A, and PSENEN genes were elevated compared to the control group. Additionally, histopathological examinations of the hippocampus of AlCl3-induced rat brains showed the presence of neurofibrillary tangles (NFTs). However, the administration of sarcosine produced marked improvement and protection of AD-associated pathologies induced by AlCl3 in experimental rats. Therefore, this investigation may contribute to design novel therapeutic strategies using sarcosine for the management of AD pathologies.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Cloreto de Alumínio , Sarcosina/farmacologia , Sarcosina/uso terapêutico , Antioxidantes/farmacologia , Secretases da Proteína Precursora do Amiloide , Fator de Necrose Tumoral alfa , Alumínio/uso terapêutico , Ratos Wistar , Ácido Aspártico Endopeptidases , Doença de Alzheimer/metabolismo
19.
J Pharm Anal ; 12(4): 637-644, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36105157

RESUMO

Balancing the risks and benefits of organophosphate pesticides (OPs) on human and environmental health relies partly on their accurate measurement. A highly sensitive fluorescence anti-quenching multi-residue bio-barcode immunoassay was developed to detect OPs (triazophos, parathion, and chlorpyrifos) in apples, turnips, cabbages, and rice. Gold nanoparticles were functionalized with monoclonal antibodies against the tested OPs. DNA oligonucleotides were complementarily hybridized with an RNA fluorescent label for signal amplification. The detection signals were generated by DNA-RNA hybridization and ribonuclease H dissociation of the fluorophore. The resulting fluorescence signal enables multiplexed quantification of triazophos, parathion, and chlorpyrifos residues over the concentration range of 0.01-25, 0.01-50, and 0.1-50 ng/mL with limits of detection of 0.014, 0.011, and 0.126 ng/mL, respectively. The mean recovery ranged between 80.3% and 110.8% with relative standard deviations of 7.3%-17.6%, which correlate well with results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proposed bio-barcode immunoassay is stable, reproducible and reliable, and is able to detect low residual levels of multi-residue OPs in agricultural products.

20.
Front Nutr ; 9: 981889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159454

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles in the brain accompanied by synaptic dysfunction and neurodegeneration. No effective treatment has been found to slow the progression of the disease. Therapeutic studies using experimental animal models have therefore become very important. Therefore, this study aimed to investigate the possible neuroprotective effect of D-cycloserine and L-serine against aluminum chloride (AlCl3)-induced AD in rats. Administration of AlCl3 for 28 days caused oxidative stress and neurodegeneration compared to the control group. In addition, we found that aluminum decreases α-secretase activity while increasing ß-secretase and γ-secretase activities by molecular genetic analysis. D-cycloserine and L-serine application resulted in an improvement in neurodegeneration and oxidative damage caused by aluminum toxicity. It is believed that the results of this study will contribute to the synthesis of new compounds with improved potential against AlCl3-induced neurodegeneration, cognitive impairment, and drug development research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA